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Summary

Through their effects on the intestinal epithelium and immunity, gut microbes and their 

fermentative byproducts can influence metabolic and psychological health parameters in patients 

with AN. Integrative therapies that restore gut microbial health may also benefit individuals with 

conditions in which gut microbial dysbiosis manifests, as in T1D, as individuals in this population 

experience difficulties with weight stabilization and altered metabolic traits and are vulnerable to 

developing symptoms of disordered eating.

Although the clinical implications of the brain-gut-microbiota axis are not yet fully understood in 

AN, targeted pro- and antibiotics represent two mechanisms by which augmenting the gut 

microbiota can serve as an ancillary therapy for lessening severity of bloating and discomfort 

during treatment. Specifically, antibiotics could be used to eliminate known pathogens that disrupt 

intestinal integrity, while targeted probiotics may help to restore beneficial species known to 

promote gut epithelial health. Thus, we conclude that controlled studies investigating use of such 

novel therapies, including FMT, should be undertaken as part of an interdisciplinary approach to 

address metabolic and psychological factors that influence acute and long-term health outcomes in 

AN and T1D. We highlight again that work on the role of the intestinal microbiota in eating 

disorders is both limited and confined to AN. As is commonly the case, biological research in 

eating disorders starts with AN before progressing to the other eating disorders presentations. Yet, 

in many ways, eating disorders are model conditions on in which to explore the gut-brain axis 

given the centrality of eating and metabolic factors to the illnesses. We encourage investigators to 
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expand on this early work by conducting studies on the other eating disorders (both in youth and 

adults) to develop a more comprehensive picture of the role that the intestinal microbiota plays in 

the development and maintenance of and recovery from these debilitating illnesses.
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Introduction

The three most common eating disorders are anorexia nervosa (AN), bulimia nervosa (BN), 

and binge-eating disorder (BED). Other presentations such as avoidant and restrictive food 

intake disorder (AFRID), purging disorder (PD), and night eating syndrome (NES) also exist 

and can be debilitating, yet we know virtually nothing about the role of the intestinal 

microbiota in these disorders. In fact, of the primary eating disorders, our understanding of 

the intestinal microbiota is limited to research on AN, which is the focus of this review. 

According to the Diagnostic Statistical Manual of Mental Disorders, 5th edition (DSM-5), 

AN is characterized by three diagnostic criteria:

1. restriction of energy intake relative to requirements leading to significantly low 

body weight,

2. fear of weight gain or becoming fat, or persistent behaviors to avoid weight gain 

despite low weight, and

3. disturbances in self-perceived weight and shape or persistent lack of recognition 

of the seriousness of the low weight.

Two subtypes—restricting AN (AN-R) and AN binge-purge (AN-BP) exist. Individuals with 

AN-R reach dangerous low weights primarily through restriction of food intake and/or 

excessive exercise or physical activity. Those with AN-BP also experience episodes of binge 

eating and/or purging as typical of BN.

Prevalence and etiology

The lifetime prevalence of AN has been reported to be between 1 and 4% of the population 

and the illness disproportionately affects women3. One 2007 case-control study from a 

cohort of Finnish women determined that the lifetime prevalence of AN according to DSM-

IV criteria was 2.2%, which was higher than in previous studies that had ascertained cases of 

AN on the basis of hospital records alone3. Indeed, only about one-third of patients with 

eating disorders are ever detected by the healthcare system3, demonstrating the importance 

of clarifying ascertainment strategy when discussing prevalence of eating disorders.

Furthermore, the new, expanded criteria for a diagnosis of AN in DSM-5 have necessitated a 

recalculation of prevalence. A Japanese study reported that the prevalence of lifetime AN 

increased by 60% in the transition to DSM-5, with evidence of somewhat lower severity 

associated with the DSM-5 cases4. A US study of 391 predominantly Caucasian (76.5%) 

female (91%) participants reported a jump from 14% (DSM-IV) to 20% (DSM-5) percent of 

Igudesman et al. Page 2

Gastroenterol Clin North Am. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



participants classified as having AN5. Although compelling, the results of both studies 

should be interpreted with caution as they are much higher than other estimates. A 2.5% 

increase in AN prevalence was reported in the shift from DSM-IV to DSM-5 criteria in a 

Portuguese sample of female high school and university students6. While the increased 

flexibility of the new criteria are favorable for insurance reimbursement in that they will 

allow a greater number of individuals to be treated, those who are classified as having AN 

may now present as a more heterogeneous group in terms of severity and metabolic 

phenotype, and should therefore be evaluated at the individual level when considering novel 

therapies such as those that will be discussed in this review.

In terms of risk for developing AN, both genetic and environmental factors are implicated7. 

Indeed, replicated twin studies have estimated the heritability of AN to be around 50–60%8. 

Results from a recent genome-wide association study (GWAS) suggest both psychiatric and 

metabolic etiological factors9. Thus, advances in AN treatment may need to focus not only 

on psychiatric, but also metabolic factors.

Treatment and prognosis

Current treatments for AN are often ineffective or lead to partial recovery, with frequent 

relapse, especially among adults10,11. Adolescents generally fare better, although relapse 

following full recovery occurs in between 7.1% and 21% of patients12–14. Further, relapse 

has been defined inconsistently, and follow-up lengths and treatment modalities have varied. 

With respect to recovery rate, one study estimated that 66.8% of patients maintained normal 

weight and menstrual cycle while abstaining from binge-eating and purging behaviors for a 

minimum of one year post-treatment15.

Therapeutic renourishment remains the cornerstone of the treatment of AN. A review 

describing developments in the treatment of AN recognized family based therapy (FBT) as 

being beneficial for youth, whereas for adults, a number of psychological approaches 

including cognitive behavioral therapy (CBT), specialist supportive clinical management, 

and interpersonal psychotherapy (IPT) have been recommended16. No medications have 

been found to be effective in the treatment of AN11.

AN remains the deadliest of any psychiatric illness. A systematic review calculated weighted 

annual mortality for AN as 5.10 deaths (95% CI, 3.99–6.14) per 1000 person-years, of 

which 1.3 deaths were attributed to suicide17. In a subsequent study, suicide was verified as 

a leading cause of death among individuals with AN18. Other factors contributing to high 

mortality rates in AN include susceptibility to infection, dehydration, and electrolyte 

imbalance19. This highlights a pressing need for novel safe and effective treatments for AN.

Gut microbial health influences psychology and behavior

Multiple biologically plausible pathways have been proposed to explain the relationship 

between intestinal microbiota and neurological processes, including microbial production 

and modulation of neurotransmitters, short-chain fatty acids (SCFA), brain-derived 

neurotrophic factor (a protein with signaling properties in the central nervous system and 

periphery), inflammation, and the hypothalamic-pituitary axis (implicated in depression 
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through secretion of hormones that stimulate cortisol production)20. A growing body of 

research—in both animals and humans—supports the concept of a brain-gut-microbiota 

axis21–25, whose signals to physiologic and neurologic processes include those related to 

eating behavior and mood.

Associations between gut microbiota and AN

Alterations in gut microbial composition and diversity

Gut microbial diversity varies inversely with severity of disease states, including in AN26 

and T1D27,28, among others. This is especially true when comparing patients with AN pre- 

and post-treatment and to normal weight (NW) healthy controls26,29. Interestingly, reduced 

enteric microbial diversity has been associated with higher depression in AN29. The link 

between gut microbial dysbiosis and depression in AN could be an important one, as a 

diagnosis of major depressive disorder was found to be a predictor of long-term AN-R 

persistence in one study (OR 5.87, P=0.01)30.

The caloric restriction characteristic of AN invites speculation that this illness allows 

microorganisms capable of surviving in a calorie-poor environment to thrive31. For instance, 

multiple studies suggest that the methane-producing archeon Methanobrevibacter smithii is 

more abundant in AN26,32,33. This increased abundance may represent an adaptive response 

to very low energy intake. Indeed, M. smithii metabolizes the hydrogen produced during 

bacterial fermentation, preventing the build- up of hydrogen gas and allowing increased 

transformation of nutrients into calories32,33, which may benefit the host during nutrient-

limited conditions. In addition, a significant decrease in the abundance of the phylum 

Bacteroidetes was reported among AN patients at baseline compared with NW controls, 

which persisted following weight restoration (FDR-adjusted P < 0.15 at baseline and P < 

0.05 at follow-up)26. On the other hand, the phylum Firmicutes was significantly elevated in 

post-treated AN patients, but not at baseline, compared to NW controls (FDR-adjusted P < 

0.05). Another bacterial phylum, Actinobacteria, was significantly elevated in AN patients 

relative to controls prior to and following weight restoration (FDR-adjusted P < 0.05 for 

both). Ultimately, there is little consistency as to which microbial phyla are associated with 

AN before or after clinical refeeding, most likely due to differing regional populations and 

treatment regimes.

Notably, Mack et al. found that relative abundance of several mucin degraders— whose 

activities may be pathological for the gut epithelium—was increased among AN patients 

compared to healthy controls at baseline (FDR-adjusted P < 0.15 for Verrucombia in AN 

group vs. controls). However, this difference was no longer statistically significant following 

treatment26. The difference in abundance of mucindegraders was also significantly reduced 

from baseline to follow-up among AN patients (FDR-adjusted P < 0.05 for Verrucombia)26, 

suggesting that certain gut microbial changes may serve as benchmarks for recovery. (Figure 

1)
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Delayed gastrointestinal motility

Methane production by M. smithii can contribute to constipation and slowed gastrointestinal 

motility, allowing more time for energy harvest from the diet32,34. This theory derives 

further support from studies demonstrating positive associations between M. smithii counts 

and either BMI or weight gain32,35,36, as well as associations between breath methane and 

high BMI34,37,38. As mentioned previously, the abundance of this archeon is elevated in AN 

patients, although research is needed to clarify the role of M. smithii in influencing energy 

metabolism and weight status among individuals with or without this illness. Arguably, M. 
smithii might be an ally in weight restoration, insofar as it allows for increased fermentation 

of carbohydrates to SCFAs that can provide energy to the host. However, SCFA are likely 

not a significant source of energy, as fermentation of 32 to 42 grams of indigestible 

carbohydrate would produce SCFA equivalent to only two to four percent of daily energy 

needs39. M. smithii might also compete for utilization of SCFAs, thereby limiting any 

potential benefit. Moreover, as M. smithii contributes to slowed intestinal motility and 

constipation, it may discourage food intake and thereby interfere with weight restoration.

Kamal et al. verified that intestinal motility, or gastric transit time is delayed among AN 

patients by measuring whole-gut and mouth to cecum transit time. As hypothesized, whole-

gut transit time was significantly delayed among AN patients compared with healthy 

controls (P < 0.05), while mouth to cecum transit time also trended towards being increased, 

although the difference did not reach statistical significance40.

Implications for treatment

Delayed gastric transit time has been reported to elevate colonization of the gut by slow-

growing mucin-degrading microbes, which may conceivably promote AN- associated 

bloating41. Moreover, patients may increase fiber consumption to relieve constipation-

associated bloating, which can further exacerbate symptoms via gaseous byproducts of 

microbial fermentation42. Bloating symptoms may then disincentivize recovery and intensify 

fear of weight gain, although these byproducts of treatment can be circumvented through use 

of antibiotics. For instance, elimination of M. smithii using antibiotic rifaxamin has been 

shown to reduce bloating symptoms43, while other probiotics have relieved bloating 

symptoms in trials of functional bowel disorders44. However, their influence on indigenous 

mucin-degrading microbes remains unknown.

Intestinal permeability, autoimmunity, and effects on appetite

Alterations in gut permeability have been demonstrated in both human and mouse models of 

AN45. This may allow foreign invaders to activate the immune system and stimulate the 

production of autoantibodies that target neuropeptides, including anorexigenic (appetite-

suppressing) α-melanocyte-stimulating hormone (α-MSH) and orexigenic (appetite-

stimulating) ghrelin46–48. This particular phenomenon has been observed in healthy women 

and rats47.

In support of the concept that autoimmunity contributes to ED, Terashi et al. have speculated 

that changes in abundance and binding availability of ghrelin autoantibodies contribute to 
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the elevated plasma ghrelin and ghrelin resistance characteristic of AN49,50. Additionally, 

autoantibodies to α-MSH were found in most AN patients and a positive correlation 

between autoantibody levels and ED pathology was detected51,52. In rodents, α-MSH 

autoantibodies were induced by caseinolytic protease B (ClpB) – an enzyme produced by 

Enterobacteriaceae, microbes observed at higher concentrations in AN patients by multiple 

research groups33,53,54. Associations between ClpB concentration and psychopathological 

traits have also been detected in AN patients53.

In contrast to other findings, reduced small intestinal permeability has also been reported 

among patients with AN55. It is possible that the effects of AN on intestinal permeability are 

site-specific; arguably, differential effects on the small intestine and the colon may reflect 

the role of gut microbiota in regulating permeability, as the highest concentrations of 

microbes occur in the colon44,56. At the same time, as Jésus et al.45 used a mouse model, 

their findings may not translate to humans. Moreover, the level of caloric restriction in these 

mice—typically 30 to 40 percent of total calories—may not match the level of caloric 

restriction common in individuals with AN, which itself is difficult to measure accurately.

Excessive exercise alters intestinal permeability and gut microbial composition

Exercise intensity and intestinal permeability are positively correlated57,58. The activity-

based anorexia (ABA) mouse phenotype yields hyperactivity via limited access to food. 

Increased colonic permeability and altered tight junction protein expression have been 

demonstrated in ABA mice45. Higher levels of mucin-degrading Akkermansia muciniphila 
have also been observed in athletes. The investigators speculated that A. muciniphila may 

improve barrier function by mechanisms still not fully understood, whereas others 

hypothesized that increased levels of the microbe would compromise the mucus layer of the 

epithelium and thereby the integrity of the intestinal barrier59,60.

Studies of forced activity in rodents could reveal how excessive exercise could affect the gut 

microbiota in AN, as it may better approximate the compulsive, compensatory exercise 

associated with AN rather than voluntary exercise. For example, Allen et al. found that mice 

subjected to forced treadmill running (FTR) had greater microbial diversity and altered gut 

microbial composition relative to mice exposed to voluntary wheel running61. While 

increased gut microbial diversity is generally associated with better health, here it was 

related to an expansion of rare bacterial species. The FTR mouse feces also exhibited a 

predominance of taxa that have been linked to disease states.

SCFA

Role in human health

SCFA—dietary metabolites produced by gut microbial fermentation of indigestible dietary 

carbohydrates—are an emerging topic of interest in metabolic health and weight 

management. Butyrate is a widely studied SCFA that is known to stimulate goblet cell 

mucin synthesis, which promotes gut health by lubricating and protecting epithelial cells. 

Butyrate also serves as a salient energy source for the intestinal epithelium62. Interestingly, 

butyrate is primarily found in milk fat63. SCFA production could be reduced in AN due to 
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avoidance of fat-containing food products (13% of calories consumed from fat have been 

noted in AN patients vs. 31% in controls)64.

Fecal SCFA are reduced in AN

Most studies have reported reduced fecal SCFA in AN patients compared with controls. 

Borgo et al. detected significantly lower fecal concentrations of total SCFA (P = .041), 

butyrate (P = .045), and propionate (P = .028); notably, their finding of decreased butyrate is 

consistent with decreased carbohydrate-fermenting genera Ruminococcus (p = .019), 

Roseburia (P = .037), and Clostridium (P = .031)33. Decreased acetate (P = .0003) and 

propionate (P = .001) were found in AN patients in Japan compared to healthy controls65. 

By contrast, Mack et al.26 reported comparable fecal concentrations of total SCFA, acetate, 

butyrate, and propionate in AN patients and controls. They nevertheless detected reduced 

butyrate as a percentage of total SCFA among AN patients on admission, compared with 

discharge and with normal weight controls, which concurred with a reduced abundance of 

butyrate-producing Roseburia. Further, butyrate concentration correlated with Roseburia 
abundance in all three groups. The inconsistencies across studies may reflect compositional 

differences that occur across geographical regions66,67.

To remedy reduced SCFA production in AN patients, some have proposed administering 

butyrate-producing Roseburia or supplementing directly with SCFAs26,68. Theoretically, 

increased intake of carbohydrates and prebiotic fibers would also enhance SCFA production. 

However, the bacterial fermentation of carbohydrates would also contribute to gas, bloating, 

and distention, producing physical discomfort after meals and potentially exacerbating body 

image concerns.

Parallels between AN and T1D

Energy dysregulation

Alterations in energy metabolism are central to both T1D and AN. Similar to the catabolic 

state that occurs due to starvation in AN69, severe weight loss is a feature of untreated 

T1D69,70. Even when treated, elevated resting energy expenditure (REE) has occurs in 

individuals with T1D relative to prediction equations for healthy individuals71,72. Although 

reduced REE occurs in underweight AN73, many patients experience hypermetabolism 

during refeeding for unknown reasons74.

Etiology, prevalence, and complications of disordered eating in T1D

It is tempting to speculate that the increased prevalence of disordered eating among 

individuals with T1D is a function of constant carbohydrate counting for blood glucose 

control and intense attention to weight. Although this behavior is initially medically-driven, 

food restriction, defined as restraint, or self-imposed resistance to food consumption75, is 

associated with undesirable shifts in behavior and metabolism. One such behavior includes 

insulin restriction76, which can lead to uncontrolled blood glucose77,78 and thus acute and 

chronic health complications. Schober et al. found that reasons most commonly reported for 

insulin omission included denial of the disease in situations with peers (30%), self-

destructive behavior and suicidal ideation (28%), fear of severe hypoglycemia (24%), and 
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intention to lose weight (15.5.%)79. Conversely, intentional insulin overdosing to enable 

binge eating has also been commonly reported among individuals with T1DM79. Elevated 

BMI may also result, as restraint can lead to uncontrolled overeating when individuals cease 

to limit their food intake80,81.

Furthermore, co-occurring T1D and ED may interact to synergistically worsen health 

outcomes. In one study, mortality via diabetes-related metabolic complications was 

increased with co-occurring T1D and AN, compared with either disorder alone 

(standardized mortality ratio 4.06, 8.86, and 14.5 for T1D, AN, and T1D and AN combined, 

respectively)82. Peveler et al. reported that among individuals with T1D, those with EDs had 

a higher baseline Hemoglobin A1c (HbA1c – a three-month measure of BG) than those 

without an ED (11.9 vs. 9.4 , P = 0.009)78. However, HbA1c was not associated with ED 

status at 8 to 12 year follow-up points, suggesting that in some instances, disordered eating 

behaviors may normalize following adolescence78.

A systematic review suggests that both BN and the combined presence of BN and AN are 

significantly elevated in patients with T1D compared with controls (both P < 0.05)2. Of 550 

female patients with T1D, 1% had lifetime AN and 16.2% had lifetime BN83. Subthreshold 

disordered eating is also prevalent, with one study reporting a greater proportion of girls 

aged 9–14 with T1D reporting two or more unhealthy eating behaviors compared to non-

diabetic controls (P < 0.0005)84.

Gut microbial dysbiosis in T1D

Although shifts in dietary behaviors rapidly and reliably alter the enteric microbial 

community, much of the literature linking T1D with changes in the gut microbiota has 

focused on infants and children proximal to T1D onset. Most27,28, but not all85 studies 

report reduced enteric microbial diversity among patients who develop autoimmunity to 

pancreatic islet cells compared to controls. Compositional differences were reported in two 

independent cohorts of Mexican and Finnish children displaying increased Bacteroides 
among T1D cases and Prevotella among controls86,87. Another research team found that two 

species from the Bacteroides phylum were significantly increased among Finnish T1D case 

children months before diabetes onset88. Yet other studies reported reduced abundance of 

Bifidobacterium in patients compared with controls89,90, although other compositional 

differences have been less consistently observed27,85,89.

Similar to AN, reduced fecal SCFA have been observed among individuals with T1D 

compared to controls. Despite a trend towards increased fiber consumption among 

individuals with T1D compared to non-diabetic controls in one study, control participants 

had increased levels of plasma acetate and propionate compared to the T1D group, although 

total fecal SCFA were similar91. This may suggest enhanced utilization of SCFA metabolites 

by individuals with T1D before they reach the plasma, perhaps in order to fulfill functions 

related to gut epithelial integrity.

The gut microbiota is associated with weight status and glycemia

It is important to note that gut microbial composition has also been found to shift reliably in 

association with changes in weight status and metabolic parameters— including glucose 
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homeostasis—in both animal and human models, which is relevant considering the increased 

prevalence of overweight and obesity among individuals with T1D92. For instance, Rabot et 

al. showed that germ-free mice fed a high-fat diet were able to maintain euglycemia (normal 

blood glucose), although conventionally-raised mice with gut microbiota that had been 

allowed to colonize naturally, developed glucose intolerance and had higher plasma insulin 

concentrations in both a fed and 6-hour unfed state93. In a study with human participants, 

Nadal et al. found that changes in blood glucose significantly correlated with changes in 

proportions of gut microbial groups in adolescents participating in a weight loss 

intervention, regardless of weight loss outcome (P=0.006)94. Of note, diagnostic crossover is 

common in eating disorders, meaning that during the course of an individual’s illness, they 

may transition across diagnostic presentations (AN, BN, BED)95, which can entail 

considerable fluctuations in weight. No work has yet been done to understand how the gut 

microbiota may be implicated in these longitudinal changes in symptom presentation.

Genetics

The association between AN and T1D may reflect shared genetic variants, including those 

related to metabolism. An AN GWAS detected one genome-wide significant variant for 

AN9, which was previously found to be associated with T1D. Significant genetic 

correlations emerged between AN and multiple metabolic traits implicated in T1D, 

including insulin resistance, fasting insulin, fasting glucose, and cholesterol and lipid 

measures9. These findings are consistent with evidence of increased ED prevalence and 

disordered eating among individuals with T1D, as well as increased risk of autoimmune 

disorders, especially of endocrinological and gastroenterological types, among individuals 

with ED48. Considerably more work is essential to confirm and dissect the nature of this 

relationship. Larger sample sizes for AN GWAS are critical first steps for any more detailed 

analysis of the association.

Future directions

It is vital to consider genetic, metabolic, and psychological factors that influence AN and 

multifactorial disorders such as T1D, in which symptoms of disordered eating, energy 

dysregulation, gut microbial dysbiosis manifest. Fecal microbiota transplantation (FMT), or 

the transfer of fecal microbiota from healthy donors to diseased patients, is one potential 

treatment that is on the horizon for many disease states including T1D and AN96 based on 

its effectiveness at treating Clostridium difficile infections97. One challenge with respect to 

translational application of FMT to other disease states is donor screening, as systematic 

assessments of donor health have yet to be established. Furthermore, no standard exists for 

ideal gut microbial composition, although screening out individuals with pathogenic gut 

microorganisms is critical. However, preliminary evidence exists that FMT can improve 

metabolic phenotypes, including median rate of glucose disappearance and insulin 

sensitivity among males with metabolic syndrome (P < 0.05), which is relevant in light of 

obesity-associated insulin resistance that can develop in T1D98,99. Thus, experimenting with 

FMT and other adjunct therapies in treating symptoms of AN and T1D may provide insight 

into how the gut microbiota contribute to disease pathology and prognosis.
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Synopsis

Anorexia nervosa has poor prognosis and treatment outcomes, and is influenced by 

genetic, metabolic, and psychological factors. Gut microbes interact with gut physiology 

to influence metabolism and neurology, although potential therapeutic benefits remain 

unknown. Type 1 diabetes is linked to anorexia through energy dysregulation, which in 

both disease states is related to the gut microbiota, disordered eating, and genetics.
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Key points

• Anorexia nervosa is highly refractory, and novel treatments are needed to 

improve prognosis.

• The gut microbiota is dysregulated in anorexia nervosa, and may be a new 

avenue for research in reducing discomfort during refeeding.

• Metabolism is often dysregulated in anorexia nervosa and type 1 diabetes, 

which share common genetic alterations, disordered eating patterns, and 

features of gut microbial dysbiosis.
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Figure 1: 
Factors that influence gut microbial composition, SCFA production, and diversity in 

anorexia nervosa.
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